This function takes a string of terms (separated by commas) or a single term and, using `fst_cn_search()` find words connected to these searched terms. Then, a dataframe is returned of 'edges' between two words which are connected together in an frequently-occurring n-gram containing a concept term.
Arguments
- data
A dataframe of text in CoNLL-U format, with optional additional columns.
- concepts
List of terms to search for, separated by commas.
- threshold
A minimum number of occurrences threshold for 'edge' between searched term and other word, default is `NULL`. Note, the threshold is applied before normalisation.
- norm
The method for normalising the data. Valid settings are `"number_words"` (the number of words in the responses), `"number_resp"` (the number of responses), or `NULL` (raw count returned, default, also used when weights are applied).
- pos_filter
List of UPOS tags for inclusion, default is `NULL` to include all UPOS tags.
Examples
con <- "kiusata, lyöminen"
fst_cn_edges(fst_child, con, pos_filter = c("NOUN", "VERB", "ADJ", "ADV"))
#> # A tibble: 2 × 3
#> from to co_occurrence
#> <chr> <chr> <dbl>
#> 1 lyöminen potkiminen 0.00696
#> 2 töniminen lyöminen 0.00127
fst_cn_edges(fst_child, con, pos_filter = 'VERB, NOUN')
#> # A tibble: 3 × 3
#> from to co_occurrence
#> <chr> <chr> <dbl>
#> 1 lyöminen potkiminen 0.00886
#> 2 lyöminen sanoa 0.00127
#> 3 töniminen lyöminen 0.00127
fst_cn_edges(fst_child, "lyöminen", threshold = 2, norm = "number_resp")
#> # A tibble: 2 × 3
#> from to co_occurrence
#> <chr> <chr> <dbl>
#> 1 lyöminen potkiminen 0.0145
#> 2 töniminen lyöminen 0.00484