Skip to contents

Introduction

This tutorial goes into further details demonstrating the use of the package, covering functions in r/02_data_exploration.R and r/03_concept_network.R. The intention is to provide an example where some initial analysis of an open-ended survey question is used to inform the settings and concept words of the Concept Network plot. Then, we demonstrate how the Concept Network settings can be fine-tuned to produce plots which are more persuasive visualisations of your findings.

Installation of package.

Once the package is installed, you can load the finnsurveytext package as below: (Other required packages such as dplyr and stringr will also be installed if they are not currently installed in your environment.)

Overview of Functions

The functions covered in this tutorial are:

  1. fst_summarise()
  2. fst_pos()
  3. fst_length_summary()
  4. fst_freq()
  5. fst_ngrams()
  6. fst_wordcloud()
  7. fst_concept_network()

The Data

We’re looking again at the FSD2821 Young People’s Views on Development Cooperation 2012 (FSD2821 Nuorten ajatuksia kehitysyhteistyöstä 2012) survey which is provided as sample data with the package.

Development Cooperation Data

  • data/dev_coop.rda

There are 3 open-ended questions we look at within this data and we will set the threshold and other function arguments to be suit each question.

The open-ended questions

  • q11_1 Jatka lausetta: Kehitysmaa on maa, jossa… (Avokysymys)
    • q11_1 Continue the sentence: A developing country is a country where… (Open question)
  • q11_2 Jatka lausetta: Kehitysyhteistyö on toimintaa, jossa… (Avokysymys)
    • q11_2 Continue the sentence: Development cooperation is an activity in which… (Open question)
  • q11_3 Jatka lausetta: Maailman kolme suurinta ongelmaa ovat… (Avokysymys)
    • q11_3 Continue the sentence: The world’s three biggest problems are… (Open question)

Demonstration of analysis

Format

First, we will format our data data.

dev_coop <- dev_coop

q11_1 <- fst_prepare(data = dev_coop,
                     question = 'q11_1',
                     id = 'fsd_id',
                     model = "ftb",
                     stopword_list = "nltk",
                     weights = 'paino',
                     add_cols = NULL,
                     manual = FALSE,
                     manual_list = "")
#> Downloading udpipe model from https://raw.githubusercontent.com/jwijffels/udpipe.models.ud.2.5/master/inst/udpipe-ud-2.5-191206/finnish-ftb-ud-2.5-191206.udpipe to /home/runner/work/finnsurveytext/finnsurveytext/vignettes/web_only/finnish-ftb-ud-2.5-191206.udpipe
#>  - This model has been trained on version 2.5 of data from https://universaldependencies.org
#>  - The model is distributed under the CC-BY-SA-NC license: https://creativecommons.org/licenses/by-nc-sa/4.0
#>  - Visit https://github.com/jwijffels/udpipe.models.ud.2.5 for model license details.
#>  - For a list of all models and their licenses (most models you can download with this package have either a CC-BY-SA or a CC-BY-SA-NC license) read the documentation at ?udpipe_download_model. For building your own models: visit the documentation by typing vignette('udpipe-train', package = 'udpipe')
#> Downloading finished, model stored at '/home/runner/work/finnsurveytext/finnsurveytext/vignettes/web_only/finnish-ftb-ud-2.5-191206.udpipe'

q11_2 <- fst_prepare(data = dev_coop,
                     question = 'q11_2',
                     id = 'fsd_id',
                     model = "ftb",
                     stopword_list = "nltk",
                     weights = 'paino',
                     add_cols = NULL,
                     manual = FALSE,
                     manual_list = "")

q11_3 <- fst_prepare(data = dev_coop,
                     question = 'q11_3',
                     id = 'fsd_id',
                     model = "ftb",
                     stopword_list = "nltk",
                     weights = 'paino',
                     add_cols = NULL,
                     manual = FALSE,
                     manual_list = "")

Here we’ll print the first 10 rows of the the raw data and then one of the the processed datasets (Q11_1).

knitr::kable(head(dev_coop, 5))
fsd_id q11_1 q11_2 q11_3 paino gender region year_of_birth education_level
1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). Ja niitä ei ole riittävästi varmaan koitetaan kehittää em saastuminen ja luonnonvarojen liikakäyttö, nälänhätä ja ylikansoittuminen 0.5440 Female Etelä-Suomi 1992 NA
2 on kurjuutta ja nälänhätää, asiat eivät ole vielä kehittyneet, lapset eivät pääse kouluun, tytöillä on huonompi asema kuin pojilla. pyritään auttamaan? ihmiskauppa, nälänhätä ja sodat/turvattomuus 0.7171 Female Pohjois- ja Itä-Suomi 1994 Matriculation examination
3 jokaisella ei ole turvattua toimeentuloa ja jossa todella huomaa koulutuksen arvon. autetaan ja näytetään ihmisille tie parempaan tulevaisuuteen heidän oman työnsä tuloksena. kouluttamattomuus, nälkä ja puhtaan veden puute. 0.6240 Female Helsinki-Uusimaa 1994 Matriculation examination
4 kehityksen taso ei ole yhtä korkea kuin kehittyneissä maissa yleensä haitataan kehitysmaan kehittymistä öljy, raha, se fakta että ei olla vielä päästy asumaan muualla kuin tällä yhdellä planeetalla 0.3401 NA Länsi-Suomi NA NA
5 asiat ovat vielä huonossa jamassa ja apua tarvitaan eriarvoisuus, sodat, nälänhätä tietyissä maissa 0.6240 Female Helsinki-Uusimaa 1993 Upper secondary vocational qualification

knitr::kable(head(q11_1, 10))
doc_id paragraph_id sentence_id sentence token_id token lemma upos xpos feats head_token_id dep_rel deps misc weight
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 1 elämiseen eläminen NOUN N,Sg,Ill Case=Ill|Number=Sing 2 nmod NA NA 0.544
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 2 tarvittavat tarvita VERB V,Pass,PcpVa,Pl,Nom Case=Nom|Number=Plur|PartForm=Pres|VerbForm=Part|Voice=Pass 3 acl NA NA 0.544
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 3 perusasiat perusasia NOUN N,Pl,Nom Case=Nom|Number=Plur 5 nsubj NA NA 0.544
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 5 kehittymättöneet kehittymättöa VERB V,Act,PcpNut,Pl,Nom Case=Nom|Number=Plur|PartForm=Past|VerbForm=Part|Voice=Act 0 root NA NA 0.544
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 7 esim. esim. PART Pcle,Abbr Abbr=Yes 8 dep NA NA 0.544
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 8 vesi vesi NOUN N,Sg,Nom Case=Nom|Number=Sing 5 obj NA SpaceAfter=No 0.544
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 10 talo talo NOUN N,Sg,Nom Case=Nom|Number=Sing 8 conj NA SpaceAfter=No 0.544
1 1 1 elämiseen tarvittavat perusasiat ovat kehittymättöneet (esim. vesi, talo, ruoka). 12 ruoka ruoka NOUN N,Sg,Nom Case=Nom|Number=Sing 8 conj NA SpaceAfter=No 0.544
1 1 2 Ja niitä ei ole riittävästi 5 riittävästi riittävästi ADV Adv NA 4 advmod NA SpacesAfter= 0.544
10 1 1 asiat ei ole niin hyvin kuin täällä rahallisesti mitattuna 1 asiat asia NOUN N,Pl,Nom Case=Nom|Number=Plur 5 nsubj:cop NA NA 0.544

Initial EDA

To begin with, let’s look at the differences between the types of reponses we get for each of these open-ended questions by using some of the EDA functions. (For further details into these functions, see “Tutorial2-Data_Exploration”)

First, let’s consider these functions:

  1. fst_summarise() - This table will indicate response rate, and word counts.
  2. fst_pos() - This table counts the number and proportion of words with each part-of-speech tag.
  3. fst_length_summary() - This table gives the average and quartile values of lengths of responses in words and sentences.

The differences in the types of responses can be seen in the exploratory data analysis results below:

Summarise

knitr::kable(
  fst_summarise(data = q11_1, desc = "Q11_1")
)
Description Respondents No Response Proportion Total Words Unique Words Unique Lemmas
Q11_1 945 24 0.98 4257 1513 1065
knitr::kable(
  fst_summarise(data = q11_2, desc = "Q11_2")
)
Description Respondents No Response Proportion Total Words Unique Words Unique Lemmas
Q11_2 941 34 0.97 4407 1270 893
knitr::kable(
  fst_summarise(data = q11_3, desc = "Q11_3")
)
Description Respondents No Response Proportion Total Words Unique Words Unique Lemmas
Q11_3 945 25 0.97 4192 1132 994

Remarks:

  • All 3 questions have a high (97/98%) response rate.
  • Q11_1 contains the most unique words.
  • All 3 questions have a similar number of unique lemmas.

POS Summary

knitr::kable(
  fst_pos(data = q11_1)
)
UPOS UPOS_Name Count Proportion
ADJ adjective 664 0.156
ADP adposition 65 0.015
ADV adverb 399 0.094
AUX auxiliary 29 0.007
CCONJ coordinating conjunction 4 0.001
DET determiner 79 0.019
INTJ interjection 0 0.000
NOUN noun 2225 0.523
NUM numeral 2 0.000
PART particle 160 0.038
PRON pronoun 47 0.011
PROPN proper noun 18 0.004
PUNCT punctuation 0 0.000
SCONJ subordinating conjunction 4 0.001
SYM symbol 2 0.000
VERB verb 552 0.130
X other 7 0.002
knitr::kable(
  fst_pos(data = q11_2)
)
UPOS UPOS_Name Count Proportion
ADJ adjective 353 0.080
ADP adposition 55 0.012
ADV adverb 178 0.040
AUX auxiliary 20 0.005
CCONJ coordinating conjunction 4 0.001
DET determiner 66 0.015
INTJ interjection 2 0.000
NOUN noun 1974 0.448
NUM numeral 3 0.001
PART particle 62 0.014
PRON pronoun 20 0.005
PROPN proper noun 7 0.002
PUNCT punctuation 0 0.000
SCONJ subordinating conjunction 11 0.002
SYM symbol 1 0.000
VERB verb 1648 0.374
X other 3 0.001
knitr::kable(
  fst_pos(data = q11_3)
)
UPOS UPOS_Name Count Proportion
ADJ adjective 389 0.093
ADP adposition 24 0.006
ADV adverb 64 0.015
AUX auxiliary 3 0.001
CCONJ coordinating conjunction 3 0.001
DET determiner 28 0.007
INTJ interjection 2 0.000
NOUN noun 3311 0.790
NUM numeral 5 0.001
PART particle 29 0.007
PRON pronoun 12 0.003
PROPN proper noun 31 0.007
PUNCT punctuation 0 0.000
SCONJ subordinating conjunction 0 0.000
SYM symbol 1 0.000
VERB verb 278 0.066
X other 12 0.003

Remarks:

  • Nouns are the most common word type across all 3 questions.
  • Q11_1 also commonly contains adjectives, adverbs and nouns.
  • Q11_2 has a similar number of nouns and verbs, and then a smaller number of adjectives and adverbs.
  • Q11_3 also has a lot of adjectives and verbs but few adverbs.

Length Summary

knitr::kable(
  fst_length_summary(
    data = q11_1,
    desc = "Q11_1",
    incl_sentences = TRUE
  )
)
Description Respondents Mean Minimum Q1 Median Q3 Maximum
Q11_1- Words 921 6.515 1 3 5 8 33
Q11_1- Sentences 921 1.058 1 1 1 1 4
knitr::kable(
  fst_length_summary(
    data = q11_2,
    desc = "Q11_2",
    incl_sentences = TRUE
  )
)
Description Respondents Mean Minimum Q1 Median Q3 Maximum
Q11_2- Words 907 5.398 1 3 4 7 30
Q11_2- Sentences 907 1.019 1 1 1 1 3
knitr::kable(
  fst_length_summary(
    data = q11_3,
    desc = "Q11_2",
    incl_sentences = TRUE
  )
)
Description Respondents Mean Minimum Q1 Median Q3 Maximum
Q11_2- Words 920 5.515 1 4 5 6 32
Q11_2- Sentences 920 1.015 1 1 1 1 3

Remarks:

  • All 3 questions have most responses being one sentence.
  • Each question has a longest response of about 30 words and most responses of about 5 words.

Most common words and n-grams

Now, lets create some tables of the most common words, bigrams and trigrams using the following functions:

  1. fst_freq()
  2. fst_ngrams()

Top Words

fst_freq(
  data = q11_1,
  number = 10,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_1"
)
#> Note:
#>  Words with equal occurrence are presented in alphabetical order. 
#>  By default, words are presented in order to the `number` cutoff word. 
#>  This means that equally-occurring later-alphabetically words beyond the cutoff word will not be displayed.


fst_freq(
  data = q11_2,
  number = 10,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_2"
)
#> Note:
#>  Words with equal occurrence are presented in alphabetical order. 
#>  By default, words are presented in order to the `number` cutoff word. 
#>  This means that equally-occurring later-alphabetically words beyond the cutoff word will not be displayed.


fst_freq(
  data = q11_3,
  number = 10,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_3"
)
#> Note:
#>  Words with equal occurrence are presented in alphabetical order. 
#>  By default, words are presented in order to the `number` cutoff word. 
#>  This means that equally-occurring later-alphabetically words beyond the cutoff word will not be displayed.

(We leave the default for norm her so “occurrence” is based on the number of words in the set of responses for each question.)

Here we can see that there is a clear ‘top’ set of words in each question:

  • Q11_1: ‘ihminen’ (man)
  • Q11_2: ‘kehitysmaa’ (developing country), ‘auttaa’ (helps)
  • Q11_3: ‘köyhyys’ (poverty), ‘nälänhätä’ (famine), ‘sota’ (war)

Bi-grams and Trigrams

Here we look at common sets of two or three words.

fst_ngrams(
  data = q11_1,
  number = 10,
  ngrams = 2,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_1"
)
#> Note:
#>  N-grams with equal occurrence are presented in alphabetical order. 
#>  By default, n-grams are presented in order to the `number` cutoff n-gram. 
#>  This means that equally-occurring later-alphabetically n-grams beyond the cutoff n-gram will not be displayed.

fst_ngrams(
  data = q11_1,
  number = 10,
  ngrams = 3,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_1"
)
#> Note:
#>  N-grams with equal occurrence are presented in alphabetical order. 
#>  By default, n-grams are presented in order to the `number` cutoff n-gram. 
#>  This means that equally-occurring later-alphabetically n-grams beyond the cutoff n-gram will not be displayed.

fst_ngrams(
  data = q11_2,
  number = 10,
  ngrams = 2,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_2"
)
#> Note:
#>  N-grams with equal occurrence are presented in alphabetical order. 
#>  By default, n-grams are presented in order to the `number` cutoff n-gram. 
#>  This means that equally-occurring later-alphabetically n-grams beyond the cutoff n-gram will not be displayed.

fst_ngrams(
  data = q11_2,
  number = 10,
  ngrams = 3,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_2"
)
#> Note:
#>  N-grams with equal occurrence are presented in alphabetical order. 
#>  By default, n-grams are presented in order to the `number` cutoff n-gram. 
#>  This means that equally-occurring later-alphabetically n-grams beyond the cutoff n-gram will not be displayed.

fst_ngrams(
  data = q11_3,
  number = 10,
  ngrams = 2,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_3"
)
#> Note:
#>  N-grams with equal occurrence are presented in alphabetical order. 
#>  By default, n-grams are presented in order to the `number` cutoff n-gram. 
#>  This means that equally-occurring later-alphabetically n-grams beyond the cutoff n-gram will not be displayed.

fst_ngrams(
  data = q11_3,
  number = 10,
  ngrams = 3,
  norm = "number_words",
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  strict = TRUE,
  name = "Q11_3"
)
#> Note:
#>  N-grams with equal occurrence are presented in alphabetical order. 
#>  By default, n-grams are presented in order to the `number` cutoff n-gram. 
#>  This means that equally-occurring later-alphabetically n-grams beyond the cutoff n-gram will not be displayed.

Recall the open-ended questions

  • q11_1 Jatka lausetta: Kehitysmaa on maa, jossa… (Avokysymys)
    • q11_1 Continue the sentence: A developing country is a country where… (Open question)
  • q11_2 Jatka lausetta: Kehitysyhteistyö on toimintaa, jossa… (Avokysymys)
    • q11_2 Continue the sentence: Development cooperation is an activity in which… (Open question)
  • q11_3 Jatka lausetta: Maailman kolme suurinta ongelmaa ovat… (Avokysymys)
    • q11_3 Continue the sentence: The world’s three biggest problems are… (Open question)

Common themes raised in bigrams and trigrams:

  • Q11_1
    • Discussion about groups of people living in poverty
    • ‘suuri osa ihminen’, ‘tarvita apu’, ‘ihminen nähdaä nälkä’, ‘osa ihminen elää’, ihminen elää köyhyysraja’, ‘köyhä ihminen’
  • Q11_2
    • Themes about helping countries develop
    • ‘auttaa kehitysmaa’, ‘pyrkiä auttaa kehitysmaa’, ‘auttaa kehitysmaa auttaa’
  • Q11_3
    • Concern about lack of water, clean water
    • ‘vesi puute’, ‘puhdas vesi’, ‘puhdas vesi puute’

Wordcloud

fst_wordcloud()

We can see the most frequent words identified above also coming out in the wordclouds.

fst_wordcloud(
  data = q11_1,
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  max = 100
)


fst_wordcloud(
  data = q11_2,
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  max = 100
)


fst_wordcloud(
  data = q11_3,
  pos_filter = c("NOUN", "VERB", "ADJ", "ADV"),
  max = 100
)

Exploring some concept networks based on thematic frequently occurring words

fst_concept_network()

Based on the most frequently-occurring words, we have chosen some lists of “concepts” for each question and will create Concept Networks based on these. You can see below how the threshold can be used to make sure the concept network isn’t too “busy” by removing less frequent connection words. Similarly, you can see how the length of the “concepts” list impacts the “busyness” of the plot. Often, the “concept” list and appropriate threshold will be the product of trial and error.

Q11_1

  • q11_1 Jatka lausetta: Kehitysmaa on maa, jossa… (Avokysymys)
    • q11_1 Continue the sentence: A developing country is a country where… (Open question)
  • Chosen concept words : “elintaso, köyhä, ihminen”
    • (In English) standard of living, poor, man
fst_concept_network(
  data = q11_1,
  concepts = "elintaso, köyhä",
  threshold = NULL,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_1 - No threshold"
)

fst_concept_network(
  data = q11_1,
  concepts = "elintaso, köyhä",
  threshold = 3,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_1 - Threshold = 3"
)

fst_concept_network(
  data = q11_1,
  concepts = "elintaso, köyhä, ihminen",
  threshold = NULL,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_1 - No threshold"
)

fst_concept_network(
  data = q11_1,
  concepts = "elintaso, köyhä, ihminen",
  threshold = 3,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_1 - Threshold = 3"
)

Remarks:

Here, our first plot may be the best. We can see that a threshold is not required as there are not too many words displayed but we can get some insight into the use of these words (in English, they are ‘standard-of-living’ and ‘poor’). As you can see in plots 3 and 4, when including the most common word, ‘ihminen’ (‘human being’ or ‘man’), a threshold such as 3 is advisable.

Q11_2

  • q11_2 Jatka lausetta: Kehitysyhteistyö on toimintaa, jossa… (Avokysymys)
    • q11_2 Continue the sentence: Development cooperation is an activity in which… (Open question)
  • Chosen concept words: “kehitysmaa, auttaa, pyrkiä, maa, ihminen”
    • (In English) development, help, strive, country, man
fst_concept_network(
  data = q11_2,
  concepts = "kehitysmaa, auttaa, pyrkiä, maa, ihminen",
  threshold = NULL,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_2 - No threshold"
)

fst_concept_network(
  data = q11_2,
  concepts = "kehitysmaa, auttaa, pyrkiä, maa, ihminen",
  threshold = 10,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_2 - Threshold = 10"
)

fst_concept_network(
  data = q11_2,
  concepts = "kehitysmaa, auttaa, pyrkiä, maa, ihminen",
  threshold = 5,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_2 - Threshold = 5"
)


fst_concept_network(
  data = q11_2,
  concepts = "kehitysmaa, auttaa, pyrkiä",
  threshold = NULL,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_2 - No threshold"
)

fst_concept_network(
  data = q11_2,
  concepts = "kehitysmaa, auttaa, pyrkiä",
  threshold = 5,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_2 - Threshold = 5"
)

Remarks:

In Q11_2, plots 1-3 show that if we include all 5 of our words (‘developing country’, ‘help’, ‘strive’, ‘country’, ‘man’) or a subset that a threshold is required, but that a threshold of 10 is too large to gain additional words in the Network. Here threshold = 5 seems appropriate.

Q11_3

  • q11_3 Jatka lausetta: Maailman kolme suurinta ongelmaa ovat… (Avokysymys)
    • q11_3 Continue the sentence: The world’s three biggest problems are… (Open question)
  • Chosen conpcet words: “köyhyys, nälänhätä, sota, ilmastonmuutos, puute”
    • (In English) poverty, famine, war, climate change, lack of
fst_concept_network(
  data = q11_3,
  concepts = "köyhyys",
  threshold = NULL,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_3 - köyhyys / No threshold"
)

fst_concept_network(
  data = q11_3,
  concepts = "köyhyys, puute",
  threshold = NULL,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_3 - köyhyys, puute / No threshold"
)

fst_concept_network(
  data = q11_3,
  concepts = "köyhyys, nälänhätä, sota, ilmastonmuutos, puute",
  threshold = NULL,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_3 - No threshold"
)

fst_concept_network(
  data = q11_3,
  concepts = "köyhyys, nälänhätä, sota, ilmastonmuutos, puute",
  threshold = 3,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_3 - Threshold = 3"
)

fst_concept_network(
  data = q11_3,
  concepts = "köyhyys, nälänhätä, sota, ilmastonmuutos, puute",
  threshold = 2,
  norm = "number_words",
  pos_filter = NULL,
  title = "Q11_3 - Threshold = 2"
)

Remarks:

In Q11_3, we can see that if your concept word list is short (such as a single word) thresholds generally are not required, but that with longer concept lists, setting a threshold = 2 or threshold = 3, we can simplify and improve a plot that is a little too crowded in this case. The “best” threshold is generally a matter of context and at the analyst’s discretion.

Conclusion

From the above, we can see that different settings create different Concept Networks. There is no “right” setting for a Concept Network, so it is worthwhile exploring the Concept Networks that result from different concept words and thresholds to investigate the data and identify trends which warrant further analysis. Initial Concept Network settings can be informed by other functions in finnsurveytext, such as choosing the most frequent words/n-grams or considering insights from wordclouds.

Citation

Finnish Children and Youth Foundation: Young People’s Views on Development Cooperation 2012 [dataset]. Version 2.0 (2019-01-22). Finnish Social Science Data Archive distributor]. http://urn.fi/urn:nbn:fi:fsd:T-FSD2821